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Mechanisms of Analogical Learning

Dedre Sentner

It is widely accepted that similarity is a key determinant of transfer. In

this chapter I suggest that both of these venerable terms -- siilarity and

trassfer -- refer to complex nations that require further differentiation. I

approach the problem by a double decomposition: decomposing similarity into

finer subclasses and decomposing learning by similarity and analogy into a set %

of component subprocesses.

One thing reminds us of another. Rental experience is full of moments in which

a current situation reminds us of some prior experience stored in memory.

Sometimes, such remindings lead to a change in the way we think about one or

both of the situations. Here is an example reported by Dan Slobin (personal

communication, April 1986). His daughter, Maid&, had travelled quite a bit by

the age of three. One day in Turkey she heard a dog barking, and remarked

"Dogs in Turkey make the same sound as dogs in America... Maybe
all dogs do. Do dogs in India sound the same?"

Where did this question come from? According to Slobin's notebook, " She

apparently noticed that while the people sounded different from country to

country, the dogs did not...' The fact that only humans speak different

languages may seem obvious to an adult9 but for Heida to arrive at it by

observation must have required a series of insights. She had to compare people

from different countries and note that they typically sound different. She

also had to compare dogs from different countries and note that they sound the

same. Finally, in order to attach significance to her observation about dogs,

she must have drawn a parallel -- perhaps implicitly -- between dogs making

sounds and humans making sounds so that she could contrast "As you go from



country to country, people sound different but dogs sound the same." Thus her

own experiential comparisons led her to the beginnings of a major insight

about the difference between human language and animal sounds.

This example illustrates some of the power of spontaneous remindings.

Spontaneous resindings can lead us to make now inferences, to discover a

common abstraction, or, as here, to notice an important difference between two

partly similar situations (e.g., Ross, 1997). The ultimate aim of this paper

is to trace learning by analogy and similarity from the initial reminding to

the final storage of soe new information. Spontaneous analogical learning'

can be decomposed into subprocesses of (1) accessing the base system; (2)

performing the mapping between base and target; (3) judging the soundness of

the match; (4) storing inferences in the target; and sometimes, (5) extracting

the commonalities (Clement, 1981, 1983; Sentner 6 Landers, 1985).

This breakdown suggests that we examine the subprocesses independently. Once

this is done, it will become clear that different subprocesses involved in

analogical learning are affected by very different psychological factors.

Although the chronological first step in an experiential learning sequence is

accessing the potential anale*, I will postpone the discussion of access until

later in this paper. Instead, I begin with steps (2) and (3) -- analogzcal

nappiag and judging analogical soundness. This is the logical place to start,

because it is these processes that uniquely define analogy and allow us to see

distinctions among different kinds of similarity. It turns out that the

theoretical distinctions necessary for talking about analogical mapping are

also useful for talking about other analogical subprocesses.

1. For now, I w-11 ; the term 'na aloqil learn:n;" to rezer tz .t

learning by analogy and learning by literal similarity. Later in the acer.
I wI distinguish 3nalogy and siilarity.
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The plan of the paper is first, to describe the care structure-mapping theory

of analogical mapping, using a computer simulation to make the points clear;

secpnd, to offer psychological evidence for the core theory of analogical

mapping; and finally to discuss research that extends the framework to the 1

larger situation of analogical learning.

Analogical Mapping

The theoretical framework for this paper is the structure-mappirrg theory of

analogical mapping (Sentner, 1980, 1982, 1993, 1986; Bentner & Gentner,

1983).2 As Palmer Z1987) states, structure-mapping is concerned first with .4

what Karr (1982) called the 'computational level' and what Palmer and Kiechi

(1985) call the issue of "informational constraints' that define analogy. That

is, structure-mapping aims to capture the essential elements that constitute

analogy and the operations that are computationally necessary in processing

analogy. The question of how analogies are processed in real time -- that is,

the question of which algorithms are used, in Marr's terminology, or which

behavioral constraints apply, in Palmer & Kimchi's terminology -- will be

deferred until later in this paper.

The central idea in structure-mapping is that an analogy is a mapping of

knowledge from one domain (the base) into another (the target) which conveys

that a system of relations that holds among the base objects also holds among

the target objects. Thus an analogy is a way of focusing on relational

coamonalties independently of the objects in which those relations are

embedded. In interpreting an analogy, people seek to put the objects of the

2. This account has tene"ited from the comments and suggestions of R,/
colleagues since my first proposal in 1980. Here and there I will indicate
some oays in which the theory has changed.

. ,.
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baei 11crrespondenceR with the objects in the target so as to obtain the

maximum structural match. Objects are placed in correspondence by virtue of

their like roles in the common relational structure; there does not need to be

any resemblance between the target objects and their corresponding base

objects. Central to the sapping process is the principle of systematicity:

people prefer to map connected systems of relatioss governed by higher-order V

relations with inferential import, rather than isolated predicates. -

Analogical sapping is in general a combination of matching existing predicate

structures and importing new predicates (carryover). To see this, first 9

consider the two extremes. In our* oatchi nl, the learner already knows

something about both domains. The analogy conveys that a relational system in

the target domain matches with one in the bass domain. In this case the

analogy serves to focus attention on the matching system, rather than to

convey new knowledge. In pure carryover, the learner initially knows something

about the base domain but little or nothing about the target domain. The

analogy specifies the object correspondences and the learner simply carries

across a known system of predicates from the base to the target. This is the

case of maximal mn knowledge. Whether a given analogy is chiefly matching or

mapping depends, of course, on the state of knowledge in the learner. For

example, consider this analogy by Oliver Mandell Holmes Jr.: "Many ideas grow-

better when transplanted into another mind than in the one where they sprang

up.* For some readers, this might be an instance of pure mapping: by importing

the knowledge structure from the domain of plant-growing to the domain of

idea-development they receive a completely new thought about the latter

domain. But for readers who have entertained similar thoughts, the process is %

more one of matching. The effect of the analogy is then not so much to import

new knowledge as to focus attention on certain portions of the existing ~

-4-



knowledge. flost explanatory analogies are a combination of matching and

carryover. Typically, there is a partial match between base and target

systems, which then sanctions the importing of further predicates from the

base to the target. " 'J.

A clarification may be useful here. Soie readers have interpreted the

systematicity principle to mean that the save set of predicates should always

be sapped from a given base domain, regardless of the target (Holyoak, 1985).

By this construal, the interpretation of an analogy would depend only on the

base domain. This is a misunderstanding of structure-mapping. The only case in

which the mapping depends solely on the base domain is when nothing is known

about the target (the pure carryovtr case). In the normal case, a given base- -

target pair produces a set of matching predicates. Changing either member of

the pair produces a different set of matching predicates. Systematicity

operates as a selection principle: among the many possible predicate matches

between a given base a'nd target, it favors those that form coherent systems of

mutually interconnecting relations.

To illustrate the structure-mapping rules, we turn to a specific example: the

analogy between heat-flon and water-flow. (See Gentner & Jaziorski (in press)

for a discussion of Carnot's use of this analogy in the history of heat and

temperature.) Figure I shows a water-flow situation and an analogous heat-flow

situation (adapted from Buckley, 1979, pp 15-25).

I will go through this analogy twice. The first time I give the analogy as it

might occur in an educational setting in which the learner knows a fair amount

about water and almost nothing about heat flow. Here the learner is given the

object correspondences between water and heat and simply imports predicates

from the water domain to the heat domain. This is a case of pure carryover.

-'l O



Figure 1t

Examples of Physical Situation involving (a) Water-flow and (b) Heat-flow

VIAL BEAKER

Ica

C~mam

WARM COFFEEi



1, .

The second time I give the analogy as it might occur experientially, with the '.

learner having a good representation of the water domain and a partial

representation of the heat domain. Here the analogy process is a combination

of matching existing structures and importing new predicates.

The heat/water analogy: Pass 1. Figure 2 shows the representation a learner

might have of the water situation. We assume that the learner has a very weak

initial representation of the heat situation, and perhaps even lacks a firm

understanding of the difference between heat and temperature. This network

represents a portion of what a person might know about the water situation

illustrated in the previous figure.
3

The learner is told that heat flow can be understood just like water flowg "'

with temperature in the heat situation playing the role of pressure in the

water situation. The learner is also given the object correspondences

heat --> water; pipe --> metal bar;

beaker -- > coffee; vial -- > ice.

as well as the function correspondence

S . 5/

PRESSURE--> TEMPERATURE..5%

Now the learner is in a position to interpret the analogy. Even with the

correspondences given, there is still some active processing required. In .....

order to comprehend the analogy the learner must

This notation is e:-.ivalent to a predicate calculus representation: I use

:t because emphasi:as certain structural distinctions that the nrnal

n.otat:on dces not. Ir this figure, predicates are written :n upper :ase a .d

circ ed. Obiects are written in lower case and uncrcled. See Forbus !. r
Sentner ! 983, *-5.Y ,:r a i ore detailed representation o the heat-oater

a n a l o g y . ' . 5 -

- .. "'.
.5%. "
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Figure 2

A Representation of the Water Situation

IMPES

condition implication

GREATER THAN GREATER THAN FLOW
(8 1 082) (a1.fez

a, a al &2

'.%
DIAMETER DIAMETER PRESSURE PRESSURE

goal object pat source

object obj 1

obi 2 obi 2 woter pipe"

CYLINDRICAL

CLEAR,,

GLASS ",

FLAT-TOP SHINY
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- ignore object attributes, such as CYLINDRICALlbeaker) or LIQUID(coffee)

find a set of systematic base relations that can apply in the target,

using the correspondences given. Here, the pressure-difference structure

in the water domain

CAUSE(GREATER-THANCPRESSURE(beaker), PRESSURE(vial) ],

[FLOW(uater, pipe, beaker, vial).)

is mapped into the temperature-difference structure in the heat domain

CAUSE(6REATER-THANCTENPERATURE(coffee), TEMPERATURE(ice)],

CFLOW(heat, bar, coffee, 4ce)).

and discard isolated relations, such as

GREATER-THANCDIAMETER(beaker), DIAMETER(vial)] --

Figure 3 shows the resulting representation in the target domain of heat-flow

after the analogical mapping.

There are several points to note in this example. First, the object

correspondences -- heat/water, beaker/coffee, vial/ice, and pipe/bar -- and

the function correspondence PRESSURE/TEMPERATURE' are determined not by any

intrinsic similarity between the objects, but by their role in the systematic

relational structure. Systematicity also determines which relations get

carried across. The reason that -

4. In this analogy, the function PRESSURE in the water domain must ,e mapped
onto TEMPERATURE in the heat domain. Like objects, functions on oboects in
the base can be put in correspondence with different functions in the
tar;et in order to aermit mapping a larger systematic chain, as d:scissed
bel ow.

%

N ,. 1 .
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Figure 3

A Representation of the Heat Situation that results from the Heat/Water

Analogy

-'S.

IMPLIES

condition implication

GREATER THAN FO

TEMPERATURE TEMPERATURE

goal object path source

object objectI I
cfee ice cube
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GREATER-THANCPRESSURE(water, beaker), PRESSURE(water, vial)]

is preserved is that it -is part of a mappable system of higher-order

constraining relations -- in this case, the subsystem governed by the higher- N.

order relation CAUSE. In contrast, the relation

GREATER-THAN(DIAMETER(beaker), DIANETER(vial)]

does not belong to any such mappable system and so is less favored in the

match .

Second, the order of processing is probably variable. Even when the learner is

given the object-correspondences as the first step, there is no way of knowing : V.

which predicates will be sapped first. This is even more the case when the

learner is not told the object-correspondences in advance. In this case, as

exemplified in the next pass through this analogy, the object correspondences

are arrived at by determining the best predicate match -- i.e., the most

systematic and consistent match. I suspect that the order in which matches are

made and correspondences tried is extremely opportunistic and variable. It

seems unlikely that a fixed order of processing stages will be found for the

mapping of complex analogies.

Third, applying the structural rules is only part of the story. Siven a

potential interpretation, the candidate inferences oust be checked for

validity in the target. If the predicates of the base system are not valid in

the target, then another system must be selected. In goal-driven contexts, the

candidate inferences must also be checked for relevance to the goal.

.1J

Kinds of Similarity

Distinguishing different kinds of similarity is essential to understanding

learning by analogy and similarity. Therefore we turn next to the classes of

Z'tV

-9-"4
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similarity. Besides analogy, other kinds of similarity can be characterized by

whether the two situations are alike in their relational structure, object

descriptions, or both. In analogy, only relational predicates are mapped. In

literal sinilarity, both relational predicates and object-attributes are

mapped. In mere-appearance matches, it is chiefly object-attributes that are
p.

sapped. Figure 4 shows a similarity space that summarizes these distinctions.

Table I shows examples of these different kinds of similarity. The central

assumption is that it is not merely the relative *ushers of shared versus

nonshared predicates that matters -- although that is certainly important, as .4

Tversky (1977) has shown -- but also the kinds of predicates that match.

Analogy is exemplified by the water/heat example discussed above, which

conveys that a common relational system holds for the two domains: pressure

difference causes water flow and temperature difference caused heat flow.

Literal similarity is exemplified by the comparison %Kool-Aid is like water.,

which conveys that much of the water description can be applied to Kool-Aid. 7.

In literal similarity, both object attributes, such as

FLAT-TOP(water) and CYLINDRICAL(beaker)

and relational predicates, such as the systematic causal structure discussed

above, are sapped over. A nere-appearasce match is one with overlap in lower-

order predicates -- chiefly object-attributess-- but not in higher-order

relational structure. An example is "The desert shimmered like water." Mere-

appearance- matches are in a sense the opposite of analogies. Such matches are

sharply limited in their utility. Here, for example, little more beyond

appearance is shared between the desert and water. These matches, however,

!A ongoing question :n our research :~s whether tere-aoaearanze nat:',e-
should be viewed as including first-order relations as well as :t;ec-
attributes.

-9
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Similarity space: Classes of similarity based on
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Table 1

Kinds of Domain Comparison

ATT REL EXAMPLE

Literal Similwit Many Many Milk is le water.

Analogy Few Many Heow is like water.

Abstaction Few Many Heat flow is a
through-variable.

Anomaly Few Few Coffee is like the
sar system.

Mere Appearance Many Few The glas tabletop
gleamed like a pool

of water.

h m'A



cannot be ignored in a theory of learning, because they often occur among

ovice learners. One further type of match worth discussing is relational

abstractios. An example is the abstract statement *Heat is a through-

variable.', which might be available to a student who knew some system

dynamics. This abstraction, when applied to the heat domain, conveys much the

same relational structure as is conveyed by the analogy: that heat (a through-

variable) can be thought of as a flow -.ross a potential difference in

temperature (an across-variable). The difference is that the base domain is

abstract principles of through-variables and across-variables; there are no--

concrete properties of objects to be left behind in the mapping.

These contrasts are continua, not dichotomies. Analogy and literal similarity

lie on a continuum of degree-of-attribute-overlap. In both cases, the base and p

target share common relational structure. If that is aJJ they share, then the

comparison is an analogy (assuming, of course, that the domains are concrete

enough to have object descriptions). To the extent that the domains also share

common object descriptions, the comparison becomes more like literal

similarity. Another continuum exists between analogies and relational

abstractions. In both cases, a relational structure is mapped from base to

target. If the base representation includes concrete objects whose individual

attributes must be left behind in the mapping, the comparison is an analogy.

As the object nodes of the base domain become more abstract and variable-like,

the comparison becomes a relational abstraction.

In the next section I describe the way our computer simulation processes the

heat-water example. Here we move from the informational constraints to

behavioral constraints. (See Palmer, 19g7.) Before giving the algorithm, I

describe the representational conventions.

S- 10 - ,0
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Representation conventions. The order of an item in a representation as

follows: Objects and constants are order 0. The order of a predicate is one

plus the maximum of the order of its arguments. Thus, if x and y are objects,

then GREATER-THAN (x,y) is first-order and CAUSE (SREATER-THAN (x,y),

BREAK(x)] is second-order. Typical higher-order relations include CAUSE and

IMPLIES. On this definition, the order of an item indicates the depth of

structure below it. Arguments with many layers of justifications will give

rise to representation structures of high order.

A typed predicate calculus is used in the representation. There are four

representational constructs that must be distinguished. entities, which

represent individuals and constants, and three types of predicates. Predicates

are further subdivided into truth-functional predicates (relations and

attributes) and fuactions. Entities are logical individuals: i.e., the objects

and constants of a domain. Typical entities include pieces of stuff,

individual objects or beings, and logical constants. Attributes and relations A

are predicates that range over truth values. The difference is that attributes

take one argument and relations take two or more arguments. Informally,

attributes describe properties of entities, such as RED or SQUARE. Relations

describe events, comparisons or states applying to two or more entities or

predicates. First-order relations take objects as arguments: e.g., HIT(ball,

table) and INSIDE(ball, pocket). Higher-order relations such as IMPLIES and

CAUSE take other predicates as their arguments: e.g., CAUSE CHIT(cue stick,

ball), ENTER (ball, pocket)]. Functions map one or more entities into another

entity or constant. For example, SPEED(ball) maps the physical object ball

into the quantity which describes its speed.

These four constructs are all treated differently in the analogical mapping

algorithm. Relations, including higher-order relations, must match

, - 11 -



identically. Entities and functions are placed in correspondence with other

entities and functions on the basis of the surrounding relational structures.

Attributes are ignored. Thus, there are three levels of preservation:

identical matching, placing in correspondence, and ignoring.6 For example, if '. r.

an analogy requires matching a wrestler with a billiard ball, relations, such -1%.,

as CAUSE CHIT (wrestlerl, wrestler2), COLLIDE(wrestler2, ropes)] oust matc

identically. For objects and for functions, we attempt to find corresponding

objects and functions, which need not be identicals e.g., ball/wrestler and

SPEED (ball}/ FORCE (wrestler). Attributes are ignored; we do not seek

identical or even qrresponding attributes in the billiard ball for each of

the wrestler's attributes. Thus functions are treated in an intermediate

manner between relations and attributes. Functions are useful representational %

device because they allow either (a) evaluating the function to produce an

object descriptor, as in HEIBHT(Sam) 6', or using the unevaluated

function as the argument of other predicates, as in GREATER-THANCHEISHT (San),

HEISNT(Beorge)1.

It is important to note that these representations, including the distinctions

between different kinds of predicates, are intended to reflect the way

situations are construed by people (or by a simulation). Logically, an n-place

relation R(abtc,) can always be represented as a one-place predicate Q(x),

where Q(W) is true just in case R(a,b,c) is true. Further, a combination of a

function and a constant is logically equivalent to an attribute; for example,

6. The reason that attributes are ignored, rather than being placed in-
correspondence with other attributes, is to permit analogical matches
between rich objects and sparse objects.

7. Adding functions to the representation is a change from my former position,
which only distinguished between object-attributes (one-place oredicates),
and relations (2-or-more-place predicates). I thank Ken Forbus, Brian
Falkenhainer and Janice Skorstad for discussions on this issue.

-12-
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applying the function EQUALS (COLOR (BallA), red] is logically equivalent to

stating the attribute RED (DallA). Our aim is to choose the representation

that best matches the available evidence as to the person's current
-I,

psychological representation. As Palmer (1987) points out, these

representational decisions are crucial to the operation of the algorithm.

Differences in the way things are construed can cause two situations to fail

to match even if they are informationally equivalent. Thus the model would

fail to realize that HOTTER THAN (a,b) is equivalent to COLDER THAN (b,a).

This assumption may not be as implausible as it initially seems. Empirically,

we know that logical equivalence does not guarantee psychological equivalence.

Perhaps one reason that people sometimes miss potential analogies (as

discussed below) is that their current representations of base and target

constrain the kinds of analogical matches they can make.

Requiring perfect relational identity in the matching rules allows us to

capture the fact that potential analogies are often missed, for the more

exactly the representations must match the less likely analogies are to be

seen. More importantly, the relational-identity requirement keeps us from

concealing humuncular insights in the matcher. As soon as we move away from

perfect matching we are faced with a host of difficult decisions: how much V

insight do we give the matcher, hoe much ability to consider current

contextual factors, how much tolerance for ambiguity. In short we lose the

considerable advantages of having a simple, low-cost matcher. But how can we

capture the intuition that people sometimes can use analogy creatively to

surmount initially different representations? Burstein (1993) has explored one

interesting method: he allows similar predicates to match and then generalizes

the match. For example, as part of a larger analogy, 'inside' in the spatial

sense is matched with 'inside' in the abstract sense of a variable containing

-1--



wwrru~R NWWIXl XI armMT~f7FZpn RwqWWWU WW V RVITV'

•4

a value. Then a more general notion of containment is abstracted from the NO

match. This is an attractive notion which deserves further study. However, it

does run the risk of adding considerable computational ambiguity.

One way to add flexibility without sacrificing the simple matcher is to add

some tools for re-representation that are external to the matcher itself.

Then, if there was good reason to suspect a possible analogy, a relation

currently represented as COLDER-THAN (b,a) could be re-represented as HOTTER-

THAN'a,b,) or as SREATER-THAN (TEMP(a), TEMP(b)). In this way a partial

analogy could lead to the discovery that two relations hitherto seen as

different in fact refer to the sae underlying dimension. This ould allow us -

to model the use of analogy in reconstruing one domain in terms of another. An

interesting corollary of this approach is that it suggests that analogy may

act as a force towards building uniform domain representations, both within 
4,

and across domains.

The Structure-Happina _. The Structure-Mapping Engine (SHE) is a

simulation of the structure-sapping process written by Brian Falkenhainer and

Ken Forbus (Falkenhainer, Forbus, & Bentner, 1981; in press; Sentner,

Falkenhainer & Skorstad, in press). Here it is given the representations of

the base and target shown in Figure 5. As in the previous pass (Figure 2) we

assume the learner has a fair amount of knowledge about water. In contrast to

the previous pass, we now assume so&e Initial knowledge about heats the

learner knows that the coffee is hotter than the ice, and that heat will flow

from the coffee to the ice. Note, however, that the representations contain

many extraneous predicates, such as LIQUID(Nater) and LIQUID(coffee). These

are included to simulate a learner's uncertainty about what matters and to

give SHE the opportunity to make erroneous matches, just as a person eight.

: - 14-



Figure 5

Representations of Water and Heat given to the Structure-Mapping Engine.

WATER FLOW HEAT FLOW

CAUSE

GREATER FLOW (beaker, vial, GREATER
water,pipe) 2.

PRESSURE(beaker) PRESSURE(vial) TEMP (coffee) TEMP (ice cube)

GREATER FLOW (ice cube, coffee, heat, bar)

DIAMETER (beaker) DIAMETER (vial)
.

LIQUID (water) LIQUID (coffee)

FLAT-TOP (water) FLAT-TOP (coffee) -.

CLEAR (beaker) .

V,
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In addition to modeling analogy, SHE can be used with literal similarity rules

or mere-appearance rules. Both analogy rules and literal similarity rules seek

matches in relational structure; the difference is that literal similarity ' -r

rules also seek object-attribute matches. Here-appearance rules seek only

object-attribute matches. I will describe the processing using literal

similarity rules, rather than pure analogy, because this offers a better

demonstration of the full operation of the simulation, including the way

conflicts between surface and structural matches are treated.

Given the comparison Heat is like water.@, SHE uses systematicity of1~

rolational structure and consistency of hypothesized object-correspondences to

determine the mapping. The order of events is as follows:

(1) Local Patches. SHE starts by looking for identical relations in base and

target and using them to postulate potential matches. For each entity and

predicate in the base, it finds the set of entities or predicates in the

target that could plausibly match that item. These potential correspondences

(match hypotheses) are determined by a set of simple rules: for example,

- (t) if two relations have the same name, create a match hypothesis;

- (2) for every match hypothesis between relations, check their

corresponding arguments, if both are entities, or if both are functions,

then create a match hypothesis between them.
.. %, V

For example, in Figure 5, rule (1) creates match hypotheses between the

GREATER THAN relations occurring in base and target. Then rule 12) creates

match hypotheses between their arguments, since both are functions. Note that

at this stage the system is entertaining two different, and inconsistent,

match hypotheses involving GREATER THAN: one in which PRESSURE is matched with

TEMPERATURE, and one in which DIAMETER is matched with TEMPERATURE. Thus, at

-15



this stage the program will have a large number of local matches. It gives .

these local match@% evidence scares, based an a sit of local evidence rules.

For example, evidence for a match increases if the base and target predicate

have the same name. Nor* interestingly, the evidence rules also invoke

systematicity, in that the evidence for a given match increases with the

evidence for a match among the parent relations -ie, the immediately

governing higher-order relations.

(2) Constructing global matches. The next stage is to collect systems of

matches that use consistent entity-pairings. SME first propagates entity-

correspondences up each relational chain to create systems of match hypotheses

that use the same entity-pairings. It then combines these into the largest

possible systems of predicates with consistent object-mappings. These global

matches (called Smaps) are SNE's possible interpretations of the comparison.

An important aspect of SHE is that the global matches (Soaps) sanction

candzdate Wnerencest predicates from the base that get mapped into the target -

domain. These are base predicates that were not originally present in the

target, but which can be imported into the target by virtue of belonging to a

system that is shared by base and target. Thus, associated with each Soap is

a (possibly empty) set of candidate inferences. For example, in the 'winning'

Soap (as discussed below), the pressure-difference causal chain in water is

matched with the temperature-difference chain in heat, and water-flow is

matched with heat-flow. However, you may recall that the initial heat

representation lacked any causal link between the temperature difference and

the heat flow (See Figure 5). In this case, the system brings across the

higher-order predicate CAUSE from the water domain to the heat domain. In

essence, it postulates that there may be more structure in the target than it

16-
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initially knew about. Thus the resulting candidate inference in the heat

domain is

CAUSE(6REATER-THANCTENPERATURE(coffee), TEMPERATURE(ice)],

FLOW(heat, bar, coffee, ice)).

(3) Evaluating global matches. The global matches are then given a structural

evaluation, which can depend on their local match evidence, the number of

candidate inferences they support and their graph-theoretic structure -- e.g.,

the depth of the relational system.0  In this example, the winning Soap is the

pressure-temperature match discussed above, with its candidate inference of a

causal link in the heat domain. Other Smaps are also derived, including a Smap

that matches diameter with temperature and another particularly simple Smap

that matches LIUID(water) with LIQUID(coffee). But these are given low

evaluations. They contain fewer predicates than the winning Smap and, at least

equally important, they have shallower relational structures.

A few points should be noted about the way the structure-mapping engine works.

(1) SHE's interpretation is based on selecting the deepest -- i.e., most

systematic -- consistent mappable structure. Thus computing systematicity

precedes and determines the final selection of object correspondences.

,.%

(2) SNE s matching process is entirely structural. That is, it attends only to

properties such as identicality of predicates, consistency of object-pairings

9. Currently the glotal evaluation is extremely simple: the tatch hyvothesis
evidence scores are s summed for each Gmap. Although we are cr;ently
developing more ela~oratc schemes for computing the goodness o the 'aps,
this Simple sUmmatc- hda3 proved extremely effective. We have tried SE on
Zver 40 analogies, and in every case its highest-ranked Gmap is trie one
humans prefer.

V V- 17-
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and systematicity -- as opposed to seeking specific kinds of content. Thus,

although it operates on semantic representations, it is not restricted to any 4

particular prespecified content. This allows it to act as a domain-general

matcher. By promoting deep relational chains, the systematicity principle

operates to promote predicates that participate in any mutually constraining

system, whether causal, logical or mathematical.

(3) Different interpretations will be arrived at depending on which predicates

match between two domains. For example, suppose that we keep the same base -

domain -- the water system shown in Figure 5 -- but change the target domain.

Instead of two objects differing in tesperature, let the target be two objects

differing in their specific heats: say, a metal ball-bearing and a marble.

Assuming equal mass, they will also have different heat capacities. Now, the

natural analogy concerns capacity differences in the base, rather than height -4

differences. This is because the deepest relational chain that can be mapped

to the target is

CAUSE (GREATER-THAN

EDIAMETER (beaker), DIAMETER (vial)3,

GREATER-THAN [AMOUNT-OF-WATER (beaker), AMOUNT-OF-ATER(vial)])

This carries over into the target as

CAUSE (GREATER-THAN

[HEAT-CAPACITY (marble), HEAT-CAPACITY (ball)],

GREATER-THAN [AMOUNT-OF-HEAT (marble), AMOUNT-OF-HEAT (ball)3).

This illustrates that, for a given base domain, the mapping for a particular

target is determined by the best match -- i.e., the most systematic and
_J

consistent relational match -- with the target.

is
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(4) SHE is designed as a general-purpose tool kit for similarity matching. It

can operate with analogy rules, mere-appearance rules or literal similarity

rules, as discussed above.

•%

(5) The matching process in SHE is independent of the system's problee-solving

goals, although the learner's goals can influence the matcher indirectly, by

influencing the domain representations present in working memory. Again, this

represents a commitment to generality. The view is that analogy in problem-

solving is a special case of analogy.

An Architecture for Analogical Reasoning

A complete model of analogical problem solving must take account of the

context of reasoning, including the current plans and goals of the reasoner

(Burstein, 1993; Carbonell, 1983; Kedar-Cabelli, 1995; Iolyoak, 1985; MIller,

Gallanter I Pribram, 1960; Schank, 1982; Schank & Abelson, 1977). Indeed, as I

discuss below, some researchers have argued that plans and goals are so

central in analogical reasoning that we should build the analogy mechanism

around them. However, the very fact that plans and goals influence all kinds

of human thought processes, from transitive inference to the use of deductive

syllogism, shows that they are not definitive of analogy. Somehow we need to

capture the fact that analogy can be influenced by the goals of the problem-

solver while at the same time capturing what is specific about analogy.

I propose the architecture shown in Figure 6 for analogical reasoning. In this

account, plans and goals influence our thinking before and after the analogy

engine, but not during its operation. Plans and goals influence the analogy ".

process is before the match, by determining the working-memory representation

of the current situation. This in turn influences what gets accessed. So, in

19 r
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Figure 6

A Proposed Cognitive Architecture for Analogical Processing

Working

Memory

Analog

Analogy Engin
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the heat example, there are many aspects of the heat domain, but only the

aspects currently represented n orking memory are likely to influence

reeindings. Once a potential analog is accessed from long-term memory, the

analogy processor runs its course. Here too the initial domain representation

has strong effects, because it defines one input to the processor; thus it

constrains the set of matches that will be found. This leads to 'set' effects

in problem solving; it is an advantage if we are thinking about the problem

correctly and a disadvantage if we are not.

The analogy processor produces an interpretation, including candidate

inferences and a structural evaluation. If the evaluation is too low -- i.e.,

if the depth and size of the system of matching predicates is too low -- then

the analogy will be rejected on structural grounds. If the analogy passes the

structural criterion, then its candidate inferences oust be evaluated to

determine whether they are appropriate with respect to the goals of the r

reasoner. In terms of the computer model, this suggests adding a context-

sensitive, expectation-driven module to evaluate the output of the SME

(Falkenhainer, Forbus & Bentner, 1996; Falkenhainer, 1986). This extension is

compatible with the combination models proposed by Burstein (1993) and Kedar-

Cabelli (1985). Thus the key points of this proposal are (1) plans and goals

constrain the inputs to the matcher, which is where they have their largest

effect; and (2) there are three separate criteria that must be invoked in

using analogy: structural soundness, relevance and validity in the target. %

In the model proposed her@, both structural properties and contextual-

pragmatic considerations enter into analogical problm solving, but they are

not equated. The analogy processor is a well-defined, separate cognitive
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module' whose results interact with other processes, analogous to the way some

natural-language models have postulated semi-autonomous interacting subsystems

for syntax, semantics and pragmatics (e.g., Reddy, Erman, Fennell & Neely,

1973). This allows us to capture the fact that analogy must satisfy both a

structural and a pragmatic criterion.

Separating the planning context from the actual analogy processor has some

significant advantages. For one thing, it captures the notion that people can

comprehend an analogy in isolation, and that in so doing they use @any of the

same processes as they do to comprehend analogy in a problem-solving context.

That is, we can use the same structurally-guided processor for both

situations, simply adding or removing pragmatic context." Another advantage

of having the matching process be structure-driven rather than goal-driven is

that it allows for the possibility of finding unexpected matches, even perhaps

matches that contradict the learner's initial problem-solving goals. For

example, the mathematician Poincare writes about an occasion on which he set

out to prove a certain theorem and ended by discovering a class of functions

that proved the theorem wrong. If we are ever to model such cases of

unexpected creative discovery, the analogy process must be capable of finding

matches that do not depend on -- and may even contradict -- the learner's

current goals.

9. The term "module" here should not be taken in the Fodcrian sense. ! ass me
that analogical proces:ing is not innate nor hard-w:red, but at least in'
pzrt learned; nor do I assume that the analogy processor is impenetrable,
although its workings may be opaque.

$. As in all top-down e::pectztion situations, ::mprehension snould be eas;e-
it, a sc;portin; ccnte::t and harder when ccntext leads to the wrong

e;:p ctations; but th2 tsiz analogy processes do not require a ccnte:t.

- 21 - K
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Competing Views and Criticisms of Structure-sapping

Some aspects of structure-sapping have received convergent support in

artificial intelligence and psychology. Although there are differences in

emphasis, there is widespread agreement on the basic elements of one-to-one

mappings of objects and carryover of predicates (Burstein, 1983; Carbonell,

1983; Hofstadter,1984; Indurkhya, 1985; Kedar-Cabelli, 1995) Reed, 1997;

i.
Rumelhart & Norman, 1981; Van Lehn & Brown, 1980; Verbrugge 6 McCarrell, 1977;

and Winston, 1990, 1992). Further, all these researchers have some kind of

selection principle -- of which systesaticity is one example -- to filter

which predicates come over. But accounts differ in the nature of the selection

principle. Many researchers use specific content knowledge or pragmatic

information to guide the analogical selection process, rather than structural

principles like systematicity. For example, Winston's (1990, 1982) system

looks for causal relations in its ispertaace-quided matching algorithm.

Winston Cpersonal communication, November 19853 has also investigated goal-

driven importance algorithms. Many accounts emphasize the role of plans and

goals as part of the analogical mapping process. 0

the criticism most often leveled at structure-mapping is its lack of any

explicit commitment to plans and goals (Holyoak, 1995). For example, some

models combine a structure-mapping component with a plans-and-goals component

in order to choose the most contextually relevast interpretation (e.g.,

Burstein, 1983; Kedar-Cabolli, 1985). Among the claims of these researchers is

that (1) purely structural information is insufficient to guide analogical

mapping and (2) even if it were sufficient, such a system would be

inefficient. However, the evidence from SHE so far suggests that structural

matching is quite powerful, since it generates intuitively plausible answers

and does so rapidly. SHE is able to reject initially plausible predicate

.2% I



matches like 'LIQUID (water) --- ) LIQUID (coffee)" purely on the basis of

structural consistency and systematicity, There is still much research to be

done on these issues, but at present the structural approach looks quite

powerful. -:

The prAL atic account: An alternative to structure-eapp . The most radical

alternative account is that of Holyoak (1995). He holds that analogy oust be

modeled as part of a goal-driven processing system and argues that the

structure-mapping approach is 'doomed to failure' because it fails to take

account of goals. But instead of augmenting structural considerations with

some pragmatic considerations, he proposes an alternative account in which

structural principles play no role; matching is governed entirely by the

relevance of the predicates to the current goals of the problem-solver. I

first present Holyoak's proposal and then consider his critique of structure-

mapping.

Holyoak states that "¥ithin the pragmatic framework, the structure of analogy

is closely tied to the mechanisms by which analogies are actually used by the

cognitive system to achieve its goals." (Holyoak, 1995, p. 76). In the

pragmatic account, the distinction between structural commonalties and surface

commonalties is based solely on relevance. Holyoak's (p. 81) definitions of

these terms are as follows:

It is possible, based on the taxonomy of mapping relations
discussed earlier, to draw a distinction between surface and

structural similarities and dissimilarities. An identity between
two problem situations that plays no causal role in determining
the possible solutions to one or the other analog constitutes a

surface similarity. Similarly, a structure-preserving difference,
as defined earlier, constitutes a surface dissimilarity. In
contrast, identities that influence goal attainment constitute

structural similarities, and structure-violating differences
constitute structural dissimilarities. Note that the distinction
between surface and structural similarities, as used here, hinges

on the relevance of the property in question to attainment of a

SI
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successful solution. The distinction thus crucially depends on the
goal of the problem solver.

Thus, a surface similarity is defined as "an identity between two problem

situations that plays no causal role in determining the possible solutions to

one or the other analog" and structural sisilarities are 'identities that

influence goal attainment.' (Holyoak, 1985, p. 81). The distinction between

surface and structural similarities *hinges on the relevance of the property

in question to attainment of a successful solution. The distinction thus

crucially depends on the goal of the problem solver.'

olyoak's emphasis on plans and goals has some appealing features. This

account promises to replace the abstract formalisms of a structural approach

with an ecologically motivated account centered around what matters to the

individual. Further, whereas structure-mapping requires both structural

factors within the matcher and (in a complete account) pragmatic factors

external to the matcher, Holyoak's account requires only pragmatic factors.

But there are severe costs to this simplification. First, since structural

matches are defined only by their relevance to a set of goals, the pragmatic

account requires a context that specifies what is relevant before it can

operate. Therefore, it cannot deal with analogy in isolation, or even with an

analogy whose point is irrelevant to the current context. By this account

Francis Bacon's analogy "All rising to a great place is by a winding stair.'

should be uninterpretable in the present context. I leave it to the reader to

judge whether this is true.

Holyoak (1985) seems aware of this limitation and states that his pragmatic

account is meant to apply only to analogy in problem-solving. But this means

having to postulate separate analoqv processors for analogy in context and

% analogy in isolation, which seems inconvenient at best. But there are further
-4
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difficulties with the pragmatic account. Because the interpretation of an

analogy is defined in terms of relevance to the initial goals of the problem-

solver, the pragmatic view does not allow for unexpected outcomes in an

me analogical match. This means that many creative uses of analogy -- such as

scientific discovery -- are out of bounds. Finally, the pragmatic account r

lacks any means of capturing the important psychological distinction between

an analogy that fails because it is irrelevant and an analogy that fails

because it is unsound. In short, a good case can be made for the need to

augeest structural considerations with goal-relevant considerations (though I

would argue that this should be done externally to the matcher as shown in

Figure 6, for example). However, the attempt to replace structural factors

like systematicity with pragmatic factors like relevance is misguided.

Holyoak raises three chief criticisms of structure-mapping (Holyoak, 1995,

pp.74, 75). First, as discussed above, Holyoak argues that structural factors

are apiphenoeenal: What really controls analogical matching is the search for

goal-relevant predicates. The higher-order relations that enter into

systematic structures "...typically are such predicates as 'causes,

'implies,' and 'depends on,* that is, causal elements that are pragmatically

important to goal attainment. Thus, the pragmatic approach readily accounts ""

for the phenomena cited as support for Sentner's theory.' (Holyoak, 1995, p.

74).

There are two problems with this position. First, as discussed above, the

effort to replace structural constraints with goal-relevance simply does not

go through. We are perfectly capable of processing analogy without any prior

goal-context, and of interpreting analogies whose point runs contrary to our

expectations. Second, it is not correct to state that all higher-order

relations are 'causal elements pragmatically relevant to goal attainment.' For
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a xasple, ipl its' (used i n its normal logical sense) is not causal.

Mathematical analogies, such as Polya's (1954) analogy between a triangle In a

plant and a tetrahedron in space, provide clear cases of shared relational

i structure which is not causal, and which need not be goal-relevant to be

appreciated, Holstadtar (1984) provides many exampl-s o I analogies based an

. purely structural commonalities: for exampt, if abc --> abd then pqr --> pqt.

b ..

mHolyoak's second point is one of definition. In structure-nappsng the

distinction beteen analogy and literal similarity is based n the kinds of

predicates shared: analogy shares relational structure only, while literal

similarity shares relational structure plus object descriptions. Holyoak

proposes a different distinction: that analogy is sieilarity ith reference to

a goal. Thus OEven objects that Bentner would term 'literally similar' can be

analogically related if a goal is apparent.' The problem with Holyoak'srdistinction is that it classifies some things as analogy that intuitively se

rto be literal similarity. For example, consider the comparison rThis '82 Buick

,%9

is like this ' 3 Buick: you can use it to drive across ton. p By Holyoak's
criterion this is an analogy, because a specific goal is under consderation;

yet to my ear (and in structure-mapping) the wh Buicks are literally similar

whether or not a goal is involved. But since this is essentially a question of

-."..

77terminology, it may be undecidable.

Holycak's third set of criticisms is based an the misreading discussed ?

earlier: naely that in structure-mapping, the systesaticity of the base

domain by itself deterines the interpretation of an analogy, so that the

mappable propositions can be determined by a syntactic [structural] analysis

of the source analog alone.th u

toP beA li l i t F

*99'*o

is lke tis 83 Dick youcanuse t todrie acosstown' BHoloa-

.. ... crtronti is.an"analogy, becau'.''_se, a " specific .goal.'',''..is under consideration; .'...., '
, ,> .yet to,: , .myer adinsrctr-apig th two., ,,uicks .are literally- similar-. ,- ..



This is false except in the rare case where nothing at all is known about the

target (the "pure mapping" case discussed earlier). This can be seen in the

operation of SME, in which the interpretation arises out of the a detailed

match between base and target and not from 'a syntactic analysis of the source

analog alone.' (See Skorstad, Falkenhainer & Gentner (1997) for examples of

how SME yields different interpretations when the same base domain is paired

with different targets.) At the risk of belaboring the point, recall that in

structure-mapping, analogy is seen as a subclass of similarity and therefore,

as with any other kind of similarity comparison, its interpretation is based

on the best match between base and target. What distinguishes analogy from

other kinds of similarity is simply that the best match is defined as the

maximally systematic and consistent match of relational structure.

In summary, the pragmatic account is a failure insofar as it seeks to replace

structure with relevance. Though one may sympathize with the desire to take

plans and goals into account, discounting structure is the wrong way to go

about it. Nonetheless, this work, like that of Burstein (1983), Carbonell

(1983) and Kedar-Cabelli (1995) has the merit of calling attention to the -,

"* important issue of how plans and goals can be integrated into a theory of

analogy.

In modeling these processes, separating structural rules from pragmatics

allows some significant advantages: it allows us to capture the commonalities

among analogy interpretation across different pragmatic contexts, including

analogy in isolation; it allows for creativity, since the processor does not

have to know in advance which predicates are going to be shared; and it allows

us to capture the difference between relevance and soundness. However, if the

two-factor scheme I propose in Figure 6 is correct, there is still much work

to be done in specifying exactly how plans and goals affect the initial domain

- - S.
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representations that are given to the analogy processor and how they are

compared with the output of this processor in the postprocessing stage.

Psychological Evidence

Mapping

Ideal mgpeLqt rules. Structure-mapping claims to characterize the implicit

rules by which the meaning of an analogy is derived. The first empirical

question to ask is how successfully it does so; whether people do indeed

follow the rules of structure-mapping in interpreting analogies. The

prediction is that people should include relations and omit object-

descriptions in their interpretations of analogy. To test this I asked subject

to write out descriptions of objects and then to interpret analogical

comparisons containing these objects.* (Gentner, 1980, 1986). They also rated

how apt (how interesting, clever, or worth reading) the comparisons were.

The results showed that, whereas object descriptions tended to include both

relational and object-attribute information, the interpretations of

comparisons tended to include relations and omit object-attributes. For

example, a subject's description of "cigarette" was as follows'

chopped cured tobacco in a paper roll/ with or without a filter at
the end/ held in the mouth/ lit with a match and breathed through
to draw smoke into the lungs/ found widely among humans/ known by
some cultures to be damaging to the lungs/ once considered
beneficial to health

Note that this description contains both relational and attributional

information. Yet when the same subject is given the metaphor 'Cigarettes are

like time boebs." his interpretation is purely in terms of common relational

information:

They do their damage after some period of time during which no

damage may be evident.

-29-
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A second finding was that subjects considered the comparisons more apt to the -'

degree that they could find relational interpretations. There was a strong

positive correlation between rated aptness and relationality but no such

correlation for attributionality. Adults thus demonstrate a strong relational

focus in interpreting metaphor. They emphasize relational commonalties in

their interpretations when possible, and they prefer metaphors that allow such

interpretations (Gentner, 1980; 1986; Sentner & Stuart, 1993).

Developmental of sapinp rules. The implicit focus on relations in

$ interpreting analogy can seem so natural to us that it seems to go without

saying. One way to see the effects of the competence rules is to look at cases

in which these rules are not followed. Children do not show the kand of

relational focus that adults do in interpreting analogy and metaphor." A

five-year-old given the figurative comparison *A cloud is like a sponge.0

produces an attributional interpretation, such as "Both are round and fluffy."

A typical adult response is 'Both can hold water for some time and then later

give it back." Nine-year-olds are intermediate, giving some relational

interpretations, but also many responses based on common object-attributes

(Sentner, 1990; in press; Sentner & Stuart, 1993). The same developmental

shift holds for choice tasks and rating tasks (Billow, 1975; Sentner, in -'

press). Thus there is evidence for a developmental shift from attributional

focus to relational focus in production, choice and rating of analogy

interpretations.

Performance Factors in Analogical Mapping

"metaphcr" rathor n . "ai al: .' f e, t, e ens a. *. 'a et a-, -s a Je

'.gurat>' -e _ mpa- . t" , -. adults t '-.- as "-.zg"- .
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As Palmer (1987) points out, structure-eappzng als first and foremost to

capture the essential nature of analogy: what constitutes an analogy and what

operations are necessary in comprehending analogy -- what Karr (1982) called

the "computational" level and Palmer and Kimchi (1985) call 'informational

constraints.' Thus structure-mapping is in part a competence theory in that it

attempts to capture people's implicit understanding of which commonalities

should belong to analogy and which should not. The research described above

suggests that under ordinary conditions structure-sapping is also a good

approximation to a performance theory, for people's actual interpretations of

analogies fit the predictions rather well. But what happens if we make it

harder for people to perform according to the rules? By the ideal rules of

analogy, all that matters is achieving shared higher-order relational

structure. Here we ask (1) how closely people approach the ideal under

difficult circumstances and more precisely (2) what factors affect people's

performance in carrying out a structure sapping.

Transfer performance. Gentner and Toupin (1986) posed this question -

developmentally. We asked children of five and eight years of age to transfer

a story plot from one group of characters to another. Two factors were varied: -
I.

(1) the systematicity of the base domain (the original story); and (2) the
"-

transpareacy of the mapping: the degree to which the target objects resembled 0

--. p

their corresponding base objects. The systematicity of the original story was

varied by adding beginning and ending sentences that expressed a causal or

moral summary. Otherwise the stories in the systematic condition were the same

as those in the nonsystematic condition. Transparency was manipulated by

varying the similarity of corresponding characters. For example, the original

story might involve a chipmunk helping his friend the noose to escape from the

villain frog. Then the child would be told to act out the story again, with

- 0



new characters. In the high-transparency mapping, the new characters would

resemble the original characters: e.g., a squirrel, an elk and a toad,

respectively. In the medium-transparency condition, three new -inrelated

animals were used. In the low-transparency cross-mapped condition, the

characters were similar to the original characters, but occupied non-

corresponding roles: the chipmunk, moose and frog of the original story would

map onto an elk, a toad and a squirrel, respectively. We expected the cross-

mapped condition to be very difficult. More interestingly, we wanted to know

how robust the mapping rules are: how firmly can people hold to a systematic

mapping when surface similarity pushes them towards a nonsystematic solution.

Both systenaticity and transparency turned out to be important in determining

transfer accuracy. However, the two age groups showed different patterns.

Transparency affected both age groups, while systematicity affected only the

older group. For both ages, transfer accuracy was nearly perfect with highly

similar corresponding characters (high transparency), lower when

corresponding characters were quite different, and medium transparency) and

lower still in the cross-mapped condition (low transparency). For the older

group, systematicity also had strong effects. As Figure 7 shows, eight-year-

olds performed virtually perfectly, even in the most difficult sapping

conditions, when they had a systematic story structure. This is noteworthy

because, as can be seen from their performance in the nonsystematic condition,

eight-year-olds found the crossed-sapping condition quite difficult. Yet given

a systematic relational structure to hold onto, they could keep their mappings

straight.

How does this happen? Sentner & Toupin speculated that the benefit comes in

part from the way shared systems of relations help guide the mapping of lower-

order relations. An error made in mapping a particular relation from base to

4
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Figure 7

Results of the Cross-flapping Experiment: Proportion correct on transfer story a

given systesatic (SYS) or nonsystmmatic (U'SYS) original stories
CGentner and Toupin, 1986)
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target is more likely to be detected if there is a higher-order relation which

constrains that lower-order relation. Informal observations in our study

support this view. The older children, in the systematic condition, would

sometimes begin to sake an object-similarity-based error and then correct

themselves, saying something like "On no, it's the bad one who got stuck in

the hole, because he ate all the food." They were using the systematic causal

structure of the story to overcome their local mapping difficulties.

Research with adults suggests that both systematicity and transparency

continue to be important variables. Both Ross (1994; 1997) and Reed (1987)

have shown that subjects are better at transferring algebraic solutions when

corresponding base and target objects are similar. Reed (1987) measured the

transparency of the mapping between two analogous algebra problems by asking

them to identify pairs of corresponding concepts. He found that transparency

was a good predictor of their ability to notice and apply solutions from one

problem to the other. Ross (1996) has investigated the effects of cross-

mappings in remindings during problem-solving. He found that, even though

adults could still access the prior problem, their ability to transfer the

solution correctly was disrupted when crossed-iapped correspondences were

used. Robert Schumacher and I have found effects of both systematicity and

transparency in transfer of device models, using a design similar to that of

Gmntner L Toupin in which subjects transfer an operating procedure from a base

device to a target device.

The evidence is quite strong, then, that transparency makes analogical mapping

easier. Thus literal similarity is the easiest sort of mapping, and the one

for which subjects are least likely to make errors. The evidence also shows

that a systematic base model promotes accurate mapping. This means that

%I
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systematicity is a performance variable as well a competence variable. Not

only do people believe in achieving systematic mappings, they use systematic

structure to help them perform the mapping. Q

Developmental iLsli ationss The relational shift. Like adults, the 9-year-

olds in the Sentner and Toupin study were affected by both systematicity and

transparency. But the 5-year-olds showed no significant effects of systematic

base structure. All that mattered to this younger group was the transparency

of the object correspondences. These results are consistent with the results

reported earlier, and with the general developmental finding that young

children rely on surface similarity in transfer tasks (DeLoache, 1985;

Holyoak, Junn, & Billman, 1994; Keil & Batterman 1984; Kemler, 1993; Shepp,

1978, Smith, 1987; Smith & Kesler, 1977) and in metaphor tasks (Asch &

Nerlove, 1960; Billow, 1975; Dent, 1994; ardner, Kircher, Winner, & Perkins,

1975; Kogan, 1975). These findings suggest a developmental shift from reliance

on surface similarity, and particularly the transparency of the object-

correspondences, to use of relational structure in analogical mapping.'2

Access Processes

Now we are ready to tackle the issue of access to analogy and similarity.

Before doing so, let us reconnoiter briefly. I proposed at the start of this

paper a set of subprocesses necessary for spontaneous learning by analogy: (1)
:-I

accessing the base system; (2) performing the mapping between base and target;

(3) judging the soundness of the match; (4) storing inferences in the target;

Is. .4, 4t? ' Zlrn zthcn i n rt a I if -cn.,s, wc d: not ye n.ow otetne,
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and (5) extracting the common principle. So far we have considered mapping,

judging soundness, and making inferences. A major differentiating variable in

the research so far is similarity class: whether the match is sere appearance,

%J
analogy, or literal similarity. Now we ask how similarity class affects access

to analogy and similarity.

Accessinj anal_ gy and similarity_. What governs spontaneous access to similar

or analogous sitaations? Sentner & Landers (1985) investigated this question,

using a method designed to resemble natural long-term memory access. [For

details of this and related studies, see Sentner & Landers (1995) and Sentner

& Rattermann (in preparation), and Rattermann & Sentner (1987).] We first gave

our subjects a large set of stories to read and remember (18 key stories and

14 fillers). Subjects returned about a week later and performed two tasks: (1)

a rehiading task; and (2) a souadaess ratimg task.

In the reminding task, subjects read a new set of 19 stories, each of which

matched one of the 19 original stories as described below. Subjects were told

*, that if any of the new stories reminded thee of any of the original stories,

* they were to write out the original story (or stories) as completely as

possible. There were three kinds of similarity matches between base and

target:

- sere appearsace: object-attributes and first-order relations match

- true asalogy: first-order relations and higher-order relations match

- false analogy: only the first-order relations match.

. In all three cases, the base and target shared first-order relations. Other

commonalties were added to create the different similarity conditions. Table 2

shows an example set of four stories: a base story plus one example of each of

4- -



Table 2

Sample Story Set for the Access Experiment
(Gentner and Landers, 1983)

BASE story
Karla, an old hawk, lived at the top of a tall oak tree. One afternoon, 4%

%he saw a hunter on the ground with a bow and some crude arrows that had no
feathers. The hunter took aim and shot at the hawk but missed. Karla knew the
hunter wanted her feathers so she glided down to the hunter and offered to
give him a few. The hunter was so grateful that he pledged never to shoot at a
hawk again. He went off and shot deer instead.

True Analogy TARGET -

Once there was a small country called Zerdia that learned to make the
world's smartest computer.

One day Zerdia was attacked by its warlike neighbor, Sagrach. But the
missiles were badly aimed and the attack failed. The Zerdian government "p
realized that Gagrach wanted Zerdian computers so it offered to sell some of
its computers to the country. The government of Gagrach was very pleased. It
promised never to attack Zerdia again.

Moere Appearance TARGET
Once there was an eagle named Zerdia who donated a few of her

tailfeathers to a sportsman so he would promise never to attack eagles.
One day Zerdia was nesting high on a rocky cliff when she saw the

sportsman coming with a crossbow. Zerdia flew down to meet the man, but he
attacked and felled her with a single bolt. As she fluttered to the ground

r% Zerdia realized that the bolt had her own tailfeathers on it.

False Analogy TARGET
Once there was a small country called Zerdila that learned to make the

world's smartest computer. Zerdlia sold one of its supercomputers to its
neighbor, Bagrach, so Gagrach would promise never to attack Zerdia.

But one day Zerdia was overwhelmed by a surprise attack from Gagrach. As
0 it capitulated the crippled government of Zerdla realized that the attacker's
01 missiles had been guided by Zerdlan supercomputers.

4.
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the three kinds of matches. Each subject received 1/3 MA, 1/3 TA, and 1/3 FA

matches, counterbalanced across three groups.

After the subjects had completed the reminding task, they performed the

soundness rating task. They were shown their 18 pairs of stories side by

side, and asked to rate each pair for the soundness or inferential power of

the match (with 5 being *sound' and 1 being "spuriousg).

In the soundness-rating task, subjects showed the predicted preference for

true analogies. The mean soundness ratings were 4.4 for true analogy, 2.9 for

mere appearance, and 2.0 for false analogy, with the only significant

difference being between true analogy and the other two match types. This

aspect of the study provides further evidence for the systematicity principle:

common higher-order relational structure is important in determining the

subjective goodness of an analogy.

The results for access were surprising. Despite subjects's retrospective

agreement that only the analogical matches were sound, their natural

remindings did not produce analogies. Instead, they were far more likely to

retrieve superficial mere-appearance matches. given iere-appearance matches,

subjects were able to access the original story 78% of the time, whereas the

true analogies were accessed only 44% of the time, and the false analogies,
-4.

252 of the time. All three differences were significant, suggesting that (a)

surface commonalities have the most important role in access but that (b)

higher-order relational commonalties -- present in the true analogies but not

in the false analogies -- also promote access.

We have recently replicated these results, adding a literal similarity

condition, and the results show the same pattern (Gentner, Landers &

Rattermann, in preparation; Rattermann & Sentner, 1987). In access, surface U-

%'



similarity seems to be the dominant factor. Literal similarity and sert

appearance matches are more accessible than true analogies and false

analogies. In soundness, systematicity of relational structure is the dominant

factor. True analogy and literal similarity were considered sound and false

analogies and mere-appearance matches are not. Interestingly, surface

" information is superior in access even for subjects who clearly believe that

*j only structural overlap counts towards soundness. It appears that analogical

access and analogical soundness -- or at least our subjective estimates of

soundness -- are influenced in different degrees by different kinds of

similarity.

These access results accord with the findings of Sick & Holyoak (1980, 1983)

-" and of Reed (Reed, 1997; Reed, Ernst & Banerji, 1974) and Ross (1984, 1996).

In this research it has reliably been demonstrated that subjects in a problem-

solving task often fail to access prior material that is analogous to their

* current problem. For example, in Sick and Holyoak's (1980, 1993) studies, a

substantial number of subjects failed to access a potential analog -- and

therefore could solve the problem -- yet, when the experimenter suggested that

.. the prior material was relevant, they could readily apply it to solve the

" problem. This means that (1) they had clearly stored the prior analog; (2) the

, . prior analog contained sufficient information to solve their current problem;

but (3) they could not access the prior analog solely on the basis of the

current (analogous) problem structure. Thus, there is converging evidence for

the gloomy finding that relational commonalities often fail to lead to access.

There is also confirmation for the other side of the coin: that surface

commonalties do promote access (Holyoak, 1997; Novick, 1985; Reed &

Ackinclose, in preparation; Ross, 1984, 1996; Ross 6 Sofka, 19986; Schumacher, 0

V 1987). For example, Ross (1994) found clear effects of surface similarity in
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determining which earlier algebra problems subjects would be reminded of in

trying to solve later problems. Reed and Ackinclose (in preparation) found

that perceived similarity, rather than structural isomorphism, was the best

predictor of whether subjects solving algebra problems would apply the results

of a previous problem to a current problem. 13 Overall similarity, and

especially surface similarity, appears to be a major factor in accessing

material in long-term memory.

Having said all this, it is important to remember that purely relational

reminding does occur. Even young children sometimes experience analogical

insights, as attested by Heida's analogy at the beginning of this paper. As

Johnson-Laird (1987) points out, though remindings between remote domains are

relatively rare, their occurrence sometimes sparks important creative advances

(See also Sentner, 1992). A correct model of access mill have to capture both

the fact that relational remindings are comparatively rare and the fact that

they occur.

Surface Similarity and Structural Similarity

I began this paper by noting that similarity is widely considered to be an

important determinant of transfer (Thorndike, 1903; See Brown (1987) and Drown

& Campione, 1995, for discussions of this issue.). The the research reviewed

here suggests that both similarity and trassfer may be too course as

variables. A strong theme in this paper, and indeed a convergent theme across

1997, has been the need to make finer differentiations in the notion of

similarity (Collins & Burstein, 1997; Ortony & Medin, 1987; Rips and Collins,

the plan-based -d:i; view held by manry rzsear:hers ~ r...
i telligence. .ce Sertner (in press) 4or a d sc ss.-.n .
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1997; Ross, 1997; Smith, 1987). The research discussed in this chapter further

suggests that transfer must be decomposed into different subprocesses that

interact differently with different kinds of similarity. Thus the simple

statement *Similarity is important in transfer may conceal a vast set of

interactions between different varieties of similarity and different

subprocesses in transfer.

-S

Based on the research presented so far, it appears that different

subprocesses are affected by different kinds of similarity. Access is strongly

influenced by surface similarity and only weakly influenced by structural

*- similarity Analogical sapping is strongly influenced by structural similarity,

including shared systematicity; it may also be weakly influenced by surface

similarity. Judgiag souadness is chiefly influenced by structural similarity

and systematicity. Finally, extractiaq aid storing the principle underlying an

analogy seems likely to be governed by structural similarity and

systematicity. There is thus a relational shift in processing an analogy from
a.

surface to structural commonalities."

Similarity-based access may be a rather primitive mechanism -- a low-cost,

low-specificity, high-quantity process, requiring little conscious effort.

Analogical mapping and judging soundness are rather more sophisticated. They

are often somewhat effortful, they often involve conscious reasoning, and,

unlike access, they can be specifically tailored to different kinds of

similarity. One can choose whether to carry out a mapping as an analogy or as

a sere-appearance match, for example; but one cannot choose in advance whether

to access an analogy or a mere-appearance match. Access has the feel of a

--
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passive process that simply produces some number of matches that the reasoner

can accept or reject. Finally, one suspects that the processes of mapping and

judging soundness are heavily influenced by culturally learned strategies.

Access processes sees less amenable to learning. 13 To the extent that experts

differ from novices in their access patterns, I suspect this results chiefly

from experts having different knowledge representations (e.g., possessing

relational abstractions), rather than different access processes

It is tempting to speculate that similarity-driven access involves something

rather like a ballistic process, while mapping and judging soundness are more

discretionary processes. In any case, as we move down from access to mapping

and judging soundness there is a sense of increasing volitional control over

the processes. To use an analogy, gaining access to long term memory is a bit

like fishing: the learner can bait the hook -- i.e. set up the working memory

probe -- as she chooses, but once the line is thrown into the water it is

impossible to predict exactly which fish will bite.

The access bias for overall-similarity and surface-similarity matches rather

than abstract analogical remindings may seem like a poor design choice from a

machine-learning standpoint. But there may be good reasons for this bias

towards overall similarity. First, a conservative, overall-similarity bias may

be reasonable given the large size of human data bases relative to current Al

systems. The costs of checking all potential relational matches might be

prohibitive. Second, a conservative matching strategy might be prudent for

mobile biological beings. Third, by beginning with overall similarity the

A. e tay p2r~la;s ca- tz g. a::.2ss , t i-dir ct ro t z4 :,a, .- t-c

Z:'v ts z cr - "!- rC; s.n - that a . 4 re et :4+ .13t:a9S :

Z)04.;er ' . . 3 .!" 4,e-tj'eJ met~cd. Ithaii. Br:ai

-39-

% 2.-



1 d

learner allows the relational vocabulary to grow to fit the data. This lay be

one reason children learn language so such better than adults (cf. Newport,

1994).

These arguments suggest that human access is geared towards literal

similarity. But what about the fact that our access mechanisms also fall for

ere-appearance matches? Possibly, this comes about as a by-product of the

overall-sisilarity bias. By this account, it is a design flaw, but perhaps a

fairly minor one for concrete physical domains, where appearances tend not to

be very deceiving. Very often, things that look alike are alike. tSee Sentner,

in press; Redin & Ortony, 1987; Watteneaker, Nakamura k Redin, 1986.) Where

surface matches become least reliable is in abstract domains such as plane

geometry or Newtonian mechanics. The novice who assumes that what looks like a

pulley should be solved like the last pulley problem will often be wrong (Chi,

Feltovich & Glaser, 1981). Thus our surface-oriented accessor can be an

K obstacle to learning in abstract domains, where the correlation between

surface features and structural features is low.

Implications for Learning

Now let's put together these findings and ask how they bear on experiential

learning. This discussion is based on that given by Forbus & Sentner (1983,

1996). Forbus and Bentner examined the role of similarity comparisons in the

progression from early to later representations. A key assumption here is that

implicit comparisons among related knowledge structures are important in S

learning (Brooks, 1978; Jacoby & Brooks, 1984; Redin & Schaffer, 1978;

Wattenmaker, Nakamura & Medin, 1986). We conjecture that much of experiential

learning proceeds through spontaneous comparisons --- which say be implicit or

explicit --- between a current situation and prior similar or analogous
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situations that the learner has stored in memory. We also assumed that early

representations are characteristically rich and perceptually-based. That is,

early domain representations differ from more advanced representations of the C

same domain in containing more perceptual information specific to the initial

context of use. Whit does this predict? First, in terms of access, the greater

the surface match the greater the likelihood of access. Thus the matches that

are likely to occur most readily are literal similarity matches and mere

appearance matches.

* Once the base domain has been accessed the sapping process occurs. To transfer

knowledge from one domain to another a person must not only access the base

domain; he must also set up the correct object correspondences between the

* base and target and map predicates across. At this level, a mix of deep and

surface factors seems to operate. Systematicity and structural similarity

become crucial, but also the transparency of the object correspondences

(Gentner % Toupin, 1986; Reed, 1987; Ross, in press). It appears that, for

* adults and/or experts, systematicity can to some extent compensate for lack of

transparency. The rules of analogy are clear enough and the relational

* structures robust enough to allow accurate mapping without surface support.

But for children and novices, surface similarity is a key determinant of

success in analogical sapping.

*To the extent that children and novices rely on surface similarity in

accessing and mapping analogies, they are limited to literal similarity

matches and mere-appearance matches. The disadvantage of mere appearance

matches is obvious: they are likely to lead to wrong inferences about the

target. But even literal similarity matches have their limitations. For

purposes of explicitly extracting causal principles, literal similarity

matches are probably less useful than analogies. In an analogical match, the

41



shared data structure is sparse enough to permit the learner to isolate the

5 key principles. In literal similarity, there are too many common predicates to

know which are crucial (Forbus & Gentner, 1983, 1986; Ross, 1997; Wattenmaker,

Nakamura & Medin, 1996)

How do learners escape the confines of literal similarity? One way, of course,

is through explicit instruction about the relevant abstractions. But there may

be ways within experiential learning as well. If we speculate that the results

of a similarity comparison become slightly more accessible (Elio & Anderson,

1993; Sick & Holyoak, 1983; Ortony, 1979) then repeated instances of near-

literal similarity could gradually increase the salience of the relational

commonalities. At some point the relational structures become sufficiently

salient to allow analogy to occur. Once this happens, there is some likelihood

of noticing the relational commonalities and extracting them for future use.

(This conjectural sequence, which is essentially that proposed in Forbus &

-entner (1983, 1986), hinges on the claim that the results of an analogy are

sparser and therefore more inspectable than the results of a literal

* similarity comparison. Hence the probability of noticing and extracting the

common relational structure is greater.) The extracted relational abstractions

can then influence encoding. With sufficient domain knowledge, the set of

*known abstractions -- such as *flow-rate' or 'positive feedback situation' --

becomes large enough to allow relational encoding and retrieval.
p..

The post-access processes can be influenced both by individual training and by "

local strategies. I suspect that this is the area in which training in

thinking skills can be of most benefit. For example, people may learn better
.4.

skills for checking potential matches and rejecting bad matches, and perhaps

also skills for tinkering with potential matches to make them more useful

(Clement, 1993, 1986). However, I suspect that some parts of the system will
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always remain outside direct volitional control. To return to the fishing A

analogy, we can learn to bait the hook better, and once the fish bites we :an -.

learn better skills for landing it, identifying it, and deciding whether to

keep it or throw it back. But no matter how accurate the pre-access and post-

access processes, there is always uncertainty in the middle. When we throw the

hook into the current we cannot determine exactly which fish will bite. A

strategicil'y managed interplay between discretionary and automatic processes

may be the most productive technique for analogical reasoning.
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